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summary 
A confined stiff chain model is suggested for the prediction of the 

rotational diffusion coefficient of a rigid rodlike polymer with a slight 
flexibility above the region of dilute solution (c>>I/LJ). It shows a 
fairly good agreement with the experimental data of various polymers. 
Among them, PBLG and PBT with more rigidity are more consistent with the 
model when the log-jamming effect is considered. The predicted rotational 
diffusivity shows approximately the inverse seventh-power of length, which 
is less than 9 of Doi-Edwards tube model, but larger than the experi- 
mental value 5.7 of M-virus, while it shows the inverse power of 
concentration is a little larger than the value 2 of tube model except for 
the rodlike virus M-13. 

Introduction 
The major part of polymers are flexible and take random coil 

structures. But certain polymers are not flexible and have a stiffness of 
chain and an anisotropic geometrical shape such as rigid rodlike structure. 
It has been known that they form anisotropic or liquid crystalline phase in 
a solution when the concentration becomes sufficiently high and 
simultaneously they orient toward a certain direction. The simplest type 
is a nematic in which the molecules have some order in a certain direction. 
According to Onsager (I), the solution of rigid polymers is isotropic below 
the concentration of c =4.253/dL 2, the isotropic phase becomes unstable at 

2 the concentration of c~=16/~dL 2 and nematic above c =5.714/dL . Here L and 
d are rod length and diameter respectively and c i~ the number of polymers 
in the unit volume. 

The main properties describing the dynamics of rodlike polymer are 
rotational diffusion coefficient (D), critical polymer concentration (c ~) 
at the onset of molecular ordering and orientational order parameter 
(S),etc. The most important one of these properties is the rotational 
diffusion coefficient, because the rheological properties such as viscosity 
have analogy with it. Therefore, we concentrate our efforts on the 
prediction of the rotational diffusion coefficient in a semidilute or a 
concentrated solution. 

It is certain that a rotational diffusion coefficient is influenced by 
various factors such as molecular weight (MW) or contour length (L), 
molecular weight distribution (MWD), the ratio of rod length to diameter 
(L/d), polymer concentration (c) and flexibility of main polymer chain, 
hydrodynamic interaction between polymer and solvent and intermolecular 
association. So far the flexibility of a polymer chain among those 
factors has been overlooked in the analysis of polymer dynamics. Hence we 
consider the effect of the flexibility and other basic factors such as 
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molecular weight, L/d ratio and concentration. 
In the present work we suggest "a confined stiff chain model" which 

describes the motion of a polymer chain with diameter d and contour length 
L trapped in a cylindrical tube of diameter D as shown in ~ig.l . it [3 
as:~umed that this tube has a constant diameter and length under a given 
material and changes its position according to the confined chain motion. 
A new parameter k , which we call the constraint release length or an 
effective diffusion length of a slightly flexible chain, is introduced to 
examine the flexibility effect on the rotational diffusion of a slightly 
flexible polymer. This effective diffusion length is assumed to be much 
shorter than the whole contour length L. 

( o 
, h_:_~. A -.., _, 

Fig.l. Confined stiff chain model 
A : confined chain 
B : longitudinal cylindrical tube 

: constraint release length 

Doi-Edwards tube mq~el 
Doi and Edwards postulate in a tube model that the test rod is 

released from its constraints by the diffusion through the whole tube 
length L (2,3,4) and that rotational diffusion is mainly attributed to the 
translational motion along the tube axis. They consider that this 
longitudinal motion is the dominant diffusion process and the diffusion 
length is little affected by the polymer concentration. The disengagement 
time for this process can be estimated as the time required for a rod to 
move a distance L along the axial direction. The final result for the 
rotational diffusion constant D is given by 

r 

Dr = Dro / c2L6.[~f f(u;t)f(u';t)sin(u,u')d2ud2u'] -2 (i) 

where Dro is the unconstrained rotational diffusion coefficient (5,6) and 
written as 

3kT. ln(L/d) (2) 
Dro ='~.naL ~ 

The confined stiff chain model 
Experimental results such as viscoelasticity, the dynamic Kerr effect 

and dynamic light scattering appear to support the tube model for the 
motion of rodlike polymer (2,3). But a large discrepancy is reported on 
the magnitude of the main properties, particularly the rotational diffusion 
coefficient (7,8,9,10). Polymer chain flexibility is regarded as a 
crucial factor of this large discrepancy. Therefore, when the rods are no 
longer completely rigid, the chain flexibility should be taken into account 
for the motion of a molecular chain and its effect was confirmed by an 
electron micrograph pictures of M-13 virus (I0). The flexibility effect 
was introduced to explain the motion of a stiff polymer by Odijk (Ii). 
Later a quantitative analysis of the flexibility effect was performed by 
Doi (12) who used Brownian motion governed by reptation only. But more 
advanced theoretical analysis is needed to improve the dynamic 
characteristics of rodlike polymer. 

It is supposed that a stiff chain of contour length L and diameter d 
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is trapped in a very long cylindrical tube of diameter D. This diameter is 
artificial but determined later. We think the diffusion process requires 
two steps of motion; after a test chain (rod) diffuses out of the tube by 
the constraint release length of E , it rotates its direction by an amount 
of (ac/L). The radius of a tube ar called a jump frequency length may be 
a function of polymer concentration and the distribution of molecular 
ordering. 

First, the estimation of radius a is a very important problem to be 
c 

answered with absolute certainty. Doi estimated its value by calculating 
of the distance between the test rod and its nearest neighboring rod (2). 
He gave total number of rods (N(ac)) penetrating the cylindrical rigid 
tube as 

N(a c) = i/2"~cacL2pf(f) (3) 

where of(f) is the effect of tube dilation by which the average diameter 
of the tube becomes larger as the polymers orient in the same direction 
(13): 

4 
of(f) =~-f f(u;t)f(u,;t)sin(u,u,)d2ud2u , (4) 

For an isotropic orientational distribution Of becomes unity. 
It has been argued that neighboring rods near the center of a test 

chain have not hindrance effect on the motion of the chain while those at 
both ends impede the movement of the chain in radial direction. 
Therefore, all neighboring rods do not contribute equally to the hindrance 
effect. Hence, we assume that the portion 2~ of contour length L is 
related to the calculation of effective number of neighboring rods. This 
number can be written by 

Ne(ac) = N(ac)~ = ~cacL~Pf(f) (5) 

The number 2 indicates the effect of both ends. It is also assumed that L 
is much larger than ~. The length a c can be estimated from eq.(5) by 
setting Ne(a c) unity: 

a c = i/(~c~Lpf) (6) 

Next, the constraint release length % is important for the calculation 
of rotational diffusivity. Keller et al. (8) supposed that a test chain 
was released completely when it diffused % =L/16 (effective constraint 
length) along its own length. This effective constraint release length 
concept is useful, but it is difficult to be justified why the length is 
L/16. Jain and Cohen (14) made another suggestion that the constraint 
might be removed by a translation of a rod through only a fraction of its 
length. Thus they set % = E L, and obtained 0.15 <g < 0.3 from viscosity 
data. 

In the present work we infer the constraint release length from the 
chain fluctuation and tube diameter. According to eq.(6) a c is inversely 
dependent on concentration and gradually reducing as concentration is 
increasing. But above the onset concentration of nematic phase (c_) it 
hardly changes its value because of tube dilation effect. Becaus~ the 
radius a c approaches to a fixed value of a as a concentration increases we 
make a equal to D/2. In this nematic phas~ it is supposed that a slightly 
flexible chain (weakly bending chain) is confined in a tube with a diameter 
D which orients in a director n, the average direction of the nematic 
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polymers, i.e. a restriction is imposing a certain degree of orientational 
order on every chain owing to the nematic ordering. Therefore, ~ should be 
estimated within the tube diameter D. This indicates that E is affected 
mainly by the molecular property rather than the concentration, because the 
entire system is not influenced by a nematic field but inside the 
cylindrical tube the nematic potential prevent the chain fluctuation and 
keep the constant constraint release length as if a hypothetical tensile 
force is necessary to keep from longitudinal shrinkage (19). So E can be 
written as: 

= 2a s / < sin(cos-lu.n) > = 2a s / < sine > (7) 

where e is an angle between director vector and polymer chain (II). 
To calculate the value of ~ we need the angle 0 and ~ . These 

values can be obtained by using the equilibrium distribution function f(u) 
determined through minimization of the Helmholtz free energy (I). The 
calculation procedure can be seen in many literatures (15,16,17,18). 
Because a nonlinear integral equation appeared'in the minimization of the 
Helmholtz free energy equation with respect to the orientational 
distribution function, Onsager chose a trial function as 

~cosh(acose) 
f(u) = 4~sinh~ (8) 

where the parameter a can be determined at the minimum condition of the 
Helmholtz free energy. The results at the concentration c were given as 
follows (1). n 

= 18.64, Of = 0.497 

In fact E is a little dependent on concentration but we use a fixed value 
of E for the calculation of rotational diffusivity. 

rotational diffusion constant 
A trapped chain can move freely in a cylindrical tube without meeting 

any other constraint, but it changes its position by reptational diffusing 
process. After the chain escapes from the original cylindrical rigid tube 
and rotates, it is confined again in newly formed tube. Hence the chain 
changes its direction by an amount of (a /L) during the disengagement time 
(T~). The successive releases of constraints with a jump frequency (I/T~) 
yield a diffusion of the chain. The parallel component of diffusion (Dt) 
will be disturbed by the presence of other rods. This disturbance is 
called a log-jamming effect and depends on the concentration. Edwards and 
Evans (20) took int@ consideration of this disturbance in the high 
concentration ( c mdL~). The Edwards and Evans model gives as (20) 

D t = mtO(l-b(cdL2)3/2) (9) 

where b is a numerical constant. But b(cdL2) 3/2 should not exceed a unity 
even in the high concentration. Because of this reason eq.( 9 ) is 
modified as follows: 

D t = Dto(l - (c/c~) 3/2) (i0) 

The disengagement time (TE) required for the translational motion of 
a trapped chain to an extent of E can be estimated by 
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T% %2 / Dt 2%2 
= = ( l l )  

3 [ 1 - ( c / c * * )3 /2 )DroL2  ] 

Dto = 3/2 DroL2 

rotational diffusion constant D can be emtimated by a 
r z 

and the mean square displacement (ac/L) . Therefore, 

Fig.2. Reduced diffusivity for 
confined stiff chain model vs 
reduced concentration (ref.lO) 

..... : Experimental data 

@: M-13-WT (M�9 
D : M-13-Tn3-15 

(M=2. 28.107 ) 

- : Model equation 
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Thus the jump 
frequency the 
rotational diffusion constant D r is given by 

3Dr0 [ l-(c/c**) 3/2 ] 
D r = (a c / L) 2 / T% = (12) 

2~2c2%4L2D2 

Comparison with experiments 
The diffusion coefficient predicted by the confined stiff chain model 

is compared with many experimental results observed by a depolarized 
dynamic light scattering (7), a flow birefringence in a four-roll mill (8) 
and an electric birefringence decay (i0). Another experimental data (14) 
obtained from the viscosity data are also compared. 

Figure 2 shows that the reduced diffusivity, DrO/D , versus square of 
reduced concentra~on, (c~c') 2, for two different M-l~ virus particles 
M-13-WT ~L=8920 ~; d=85 X; molecular weight M=I.6.107) and M-13-T 3-15 
(L=15750 X; d=85 X; M=2.28,107) An aqueous solution examined by Maguire 
et al (i0). Here, c' is M/NL 3. ( M is a molecular weight and 
N is a Avogadro's number). The data of two M-13 virus are fairly 
good agreement with the suggested model without consideration of log- 
jamming effect. It is very successful because we do not use any 
correction factor. The two slopes of the model equation are more or less 
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larger than those of the data. This indicates that the inverse power of 
length (L) dependence of the rotational diffusivity is larger than 5.7 of 
experimental result. The rotational diffusion coefficient has an inverse 
fifth-power dependence as shown explicitly in the eq.(12), but because the 
constraint release length is also connected implicitly with length (L), 
actually it has an inverse seventh-power dependence which is consistent 
with the result of Zero and Pecora (7). 

Zero and Pecora (7) obtained data of three different length PBLG 
polymer in dichloroethane by using the depolarized dynamic light scattering 
technique. For the molecular weights 150000, 170000 and 210000 they 
calculated the correction factor of 1070, 1170 and 1768 respectively in 
connection with Doi-Edwards equation i.e., D =~kTln(L/d)/qS~C . 
Figure 3 represents this correction equation androur model equation. The 
results are good for all data; the more concentration increases the more 
discrepancy reduces. According to the model equation, D reduces to zero 

�9 . r 

at critical concentratzon (c*) owzng to log-jamming effect. In reality 
log-jamming effect term is a function of material and solvent, and has a 
saturated value above a certain concentration (limited to a constant 
value). This constant value should be determined from the experimental 
data. In many experimental observations (8,14,19) an inverse power 
concentration dependence of D is a little larger than the Doi-Edwards 
theoretical value of 2. This phenomena is caused by a log-jamming effect. 
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Fig.3. Rotational Diffusion Coefficient for PBLG in dichloethane 
(ref.7) 
Model equation (eq.12) vs. three different molecular weight, 
Rotational diffusivity decreases as molecular weight increases. 

: Molecular weight 150,O00 
: Molecular weight 170,0OO 
: Molecular weight 210,0OO 
: Model equation. 
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Fig.4. Rotational diffusion coefficient for PBLG in 
m-cresol ; molecular weight 270,000 (ref.14). 

O : Experimental data 
: model equation (eq.12) 
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Fig.5. Rotational diffusion coefficient for PBT in 97.5% 
methanesulfonic acid + 2.5% chlorosulfonic acid ; mole- 
cular weight 41,500 (ref.8). 

I : experimental data 
: model equation (eq.12) 
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Figure 4 and 5 represent rotational diffusion coefficient versus 
concentration for the PBLG in m-cresol (14) and PBT in the solvent 97.5% 
methanesulfonic acid and 2.5% chlorosulfonic acid (8) respectively. These 
two polymer systems have fairly good agreement with data when the log- 
jamming effect is considered. The constant (c~ in the log-jamming 
effect term in the eq.(lO) is different according to the polymer. 
Because ~ is a concentration at which the v~scosity has a maximum, its 
value ~may be around c ~. (for example, 32/~dL~is for PBLG system (21) and 
16/~dL ~ for PBT (8) system respectively). 

Conclusion 
The suggested confined stiff chain model is compared with the various 

experimental data. According to Doi-Edwards tube model, concentration 
dependence of D is proportional to the inverse square of concentration 
(c "), but for ~ome materials this dependence is more or less severe owing 
to log-jamming effect, and this effect should be considered as the polymer 
rigidity increases. % dependent exponent value is -4 and its value is 
proportional to the square root of contour length (% = /dL). Therefore, 
rotational diffusion coefficient has an inverse seventh-power dependence on 
the rod length. Inspite of this consistent result, we need a more 
advanced model in consideration of molecular weight distribution and exact 
critical concentration. As an additional remark, rod diameter is 
considered for the first time in the calculation of % (%=~),and the its 
effect should not be neglected in the advanced analysis of rigid rod motion 
in the concentrated solution. 
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